Công thức tính diện tích, thể tích hình trụ như thế nào?

Hình trụ là gì? Công thức tính diện tích, diện tích xung quanh và thể tích hình trụ là gì? Hình trụ thuộc dạng hình khối nào? Cùng tìm hiểu các kiến thức về hình trụ qua bài viết sau.

Hình trụ là gì? Tính thể tính hình trụ như thế nào?

Hình trụ là gì?

Định nghĩa hình trụ:

  • Hình trụ là hình có hai mặt đáy là hình bằng nhau và song song với nhau.
  • Hình trụ được gọi bằng cái tên đầy đủ hơn là hình trụ tròn
  • Hình trụ tiếng Anh là Cylinder

Khối hình trụ

Lưu ý:

  • Chỉ có lăng trụ tam giác chứ không có khái niệm hình trụ tam giác
  • Chỉ có hình lập phương chứ không có hình trụ vuông

Hình trụ có phải là một khối tròn xoay?

Các khối tròn xoay thường gặp

Hình trụ là một khối tròn xoay

Khối tròn xoay là một khối hình được tạo ra bằng cách quay một mặt phẳng quanh một trục cố định.

Một số khối tròn xoay được học trong chương trình phổ thông là: Hình trụ, hình nón, hình cầu hay còn gọi là hình trụ tròn xoay, hình nón tròn xoay, hình cầu tròn xoay

Các công thức tính diện tích hình trụ

Diện tích xung quanh hình trụ

Diện tích xung quanh của hình trụ bằng tích 2 lần bán kính hình trụ với chiều cao và số pi.

Công thức tính diện tích xung quanh của hình trụ:

Sxq= 2.π.r.h (m2)

Trong đó

  • Sxq  là diện tích xung quanh của hình trụ
  • r: Bán kính đường tròn đáy
  • h: Chiều cao

Diện tích toàn phần hình trụ

Diện tích toàn phần hình trụ bằng tổng diện tích xung quanh và diện tích hai mặt đáy.

Stp= Sxq+S2đáy = 2.π.r.h + 2π.r2= 2π.r.(r+h) (m2)

Trong đó:

  • Sxq, Stp : Lần lượt là diện tích xung quanh và diện tích toàn phần của hình trụ
  • S2đáy: Diện tích hai đáy của hình trụ
  • r: Bán kính đường tròn đáy
  • h: Chiều cao

Công thức tính thể tích hình trụ

Thể tích hình trụ

Thể tích hình trụ bằng tích chiều cao với bình phương bán kính hình tròn mặt đáy và số pi. Hoặc thể tích hình trụ bằng diện tích mặt đáy nhân với chiều cao.

Công thức tính thể tính hình trụ:

V = Sđáy.h = π.r2.h (m3)

Trong đó:

  • V là thể tích hình trụ
  • Sđáy là diện tích mặt đáy
  • r là bán kính hình tròn đáy
  • h là chiều cao hình trụ
  • π là số pi, có giá trị bằng 3,14

Tìm bán kính đáy hình trụ

Tìm bán kính đáy hình trụ bằng cách xác định bán kính của một hình tròn bất kỳ cắt ngang hình trụ và vuông góc với chiều cao. Mọi hình tròn được như vậy đều có bán kính bằng với mặt đáy. Có thể tìm được bán kính đáy hình trụ bằng những phương pháp sau:

Đo đường kính mặt đáy rồi chia cho 2, bởi R = 2r

Nếu biết chu vi hình tròn đáy thì bạn chia cho 2π, bởi C = 2πr

Công thức tính bán kính đáy: r = ½ R

Tính diện tích đáy hình trụ

Khi biết được giá trị của bán kính đáy hình trụ, ta tính được diện tích đáy hình trụ theo công thức sau:

Diện tích đáy hình trụ: Sđáy = π.r.2  (m2)

Tính chiều cao hình trụ

Chiều cao hình trụ được chính là đoạn thẳng nối hai đáy và vuông góc với đáy hình trụ. Như vậy có vô số đoạn thẳng là chiều cao của hình trụ, trong đó có 2 vị trí quan mà ta có thể xác định chiều cao dễ dàng:

  • Đoạn thẳng nối tâm hai hình tròn đáy của hình trụ
  • Đoạn thẳng nối một điểm trên đường tròn đáy và hình chiếu của nó trên hình tròn đáy còn lại của hình trụ

Bằng cách đặt thước vuông góc với mặt đáy hình trụ và đọc số đo của thước ở mặt đáy còn lại là biết được giá trị của chiều cao của hình trụ.

Các dạng bài tập liên quan tới tính thể tích hình trụ

Bài 1: Cho bán kính đáy và chiều cao, tính thể tích khối trụ

Cho hình trụ có đáy là hình tròn ngoại tiếp tam giác đều cạnh a. Chiều cao khối trụ bằng 3a. Tính thể tích khối trụ đã cho.

Giải:

Bán kính đáy của khối trụ là:

tinh the tich hinh tru 07

Thể tích của khối trụ đã cho là:

tinh the tich hinh tru 08

Bài 2: Cho thể tích khối trụ và chiều cao, tính bán kính đáy

Cho hình trụ có chiều cao 2a, thể tích bằng πa³. Tính bán kính đáy của hình trụ.

Giải:

Áp dụng công thức ta có:

tinh the tich hinh tru 09

Bài 3: Cho thể tích khối trụ, tính bán kính đáy và chiều cao

Cho hình trụ có chu vi một đáy là C=2π và thể tích V=12π. Chiều cao của hình trụ là bao nhiêu?

Giải:

Bán kính đáy của hình trụ là r =C / 2π = 1

Chiều cao của hình trụ bằng h= V / (π. r2 ) = 12π / (π. 12) = 12

Bài 4: Tính thể tích hình trụ tròn khi biết độ dài dây cung, góc và khoảng cách giữa dây cung với trục

Cho hình trụ (H) có 2 đáy là các đường tròn tâm O và O’. Điểm A, B lần lượt nằm trên đường tròn (O), (O’). Biết AB=a,  AB tạo với trục OO’ góc α. Khoảng cách giữa OO’ và AB bằng d. Tính theo a và α thể tích hình trụ (H).

tinh the tich hinh tru 03

Gọi C là hình chiếu của A lên đường tròn (O’). Gọi I là trung điểm của BC. Dễ thấy góc BAC là góc giữa dây AB và trục OO’. Tức là góc BAC = α.

Chiều cao khối trụ đã cho là h= OO’= AB cosα = a cosα

IC = ½ BC= a.sinα

O’I= d là khoảng cách giữa AB và OO’

Nên bán kính đáy khối trụ là:

tinh the tich hinh tru 11

Vậy thể tích khối trụ là:

tinh the tich hinh tru 12

Một số bài toán áp dụng tính thể tích hình trụ

Bài 1: Tính diện tích toàn phần của hình trụ, có độ dài đường tròn đáy là 10cm, khoảng cách giữa 2 đáy là 6cm.

Bài giải:

tinh the tich hinh tru 02

Ta có: h = 6cm, R = 10cm => r=5cm

Áp dụng công thức tính diện tích toàn phần hình trụ:

Stp= 2πr.(r+h) = 2.5(5+6) = 110 (cm2)

Vậy diện tích hình trụ là  110 (cm2)

Bài 2: Tính diện tích toàn phần của hình trụ có chiều cao là 7cm và diện tích xung quanh bằng 310 cm2

Bài giải

tinh the tich hinh tru 01

Theo đề bài ta có h=7, Sxq= 310cm2

Áp dụng công thức tính diện tích xung quanh Sxq= 2πr.h

=> r = Sxq / 2πr.h = 310/ 2πr.7=7cm

Vậy Sđáy = π .r2 = π .72= 49 π= 154 (cm2)

=> Diện tích toàn phần của khối  trụ là

Stp = 2. Sđáy + Sxq = 2.154+310= 618 cm2

Bài 3: Một hình trụ có chu vi đáy 30 cm và chiều cao là 10cm. Tính thể tích hình trụ?

Bài giải:

Bán kính đáy hình trụ là: r = C/ 2π = 30 / (2.3,14) = 4,78 cm

V hình trụ = Sđáy.h = π.r2.h = 717,44 (cm3)

Đáp số: 717,44 (cm3)

Bài 4: Tính thể tích hình trụ bên dưới, biết: r = 3 cm, AC = 5 cm.

Bài giải

tinh the tich hinh tru

– Tính chiều cao hình trụ:

Xét tam giác vuông ABC, ta có:

AB = r = 3 cm

BC = h

BC2= AC2– AB2= 52 – 32 = 16

=> BC = 4 cm

=> h = 4 cm

– Tính diện tích đáy hình trụ:

Sđáy = π.r2 = 28,26 (cm2)

=> V hình trụ ở trên là: V = Sđáy.h = 28,26.4 = 113,04 (cm3)

 

Hãy linh hoạt tư duy để áp dụng tất cả các công thức đã có sẵn trên đây để giải quyết các bài toán liên quan để thể tích và diện tích hình trụ nhé