Lý thuyết phương trình đường thẳng toán 12
1. Kiến thức
This Post: Lý thuyết phương trình đường thẳng toán 12
cần nhớ
– Phương trình tham số của đường thẳng: \(\left\{ \begin{array}{l}x = {x_0} + at\\y = {y_0} + bt\\z = {z_0} + ct\end{array} \right.\left( {t \in \mathbb{R}} \right)\)
ở đó \(M\left( {{x_0};{y_0};{z_0}} \right)\) là điểm thuộc dường thẳng và \(\overrightarrow u = \left( {a;b;c} \right)\) là VTCP của đường thẳng.
– Phương trình chính tắc của đường thẳng: \(\dfrac{{x – {x_0}}}{a} = \dfrac{{y – {y_0}}}{b} = \dfrac{{z – {z_0}}}{c}\left( {a,b,c \ne 0} \right)\)
ở đó \(M\left( {{x_0};{y_0};{z_0}} \right)\) là điểm thuộc dường thẳng và \(\overrightarrow u = \left( {a;b;c} \right)\) là VTCP của đường thẳng.
2. Một số dạng toán thường gặp
Dạng 1: Nhận biết các yếu tố trong phương trình đường thẳng.
Phương pháp:
RED : How to buy Dent | Buy DENT in 4 easy steps | Finder.com
Sử dụng các lý thuyết về phương trình đường thẳng để tìm điểm đi qua, VTCP,…
Dạng 2: Chuyển đổi các dạng phương trình chính tắc và tham số.
Phương pháp:
– Bước 1: Tìm điểm đi qua và VTCP của đường thẳng trong phương trình đã cho.
– Bước 2: Viết phương trình dạng chính tắc, tham số dựa vào hai yếu tố vừa xác định được ở trên.
Đường thẳng \(d\) đi qua điểm \(M\left( {{x_0};{y_0};{z_0}} \right)\) và có VTCP \(\overrightarrow u = \left( {a;b;c} \right)\) thì có:
+ Phương trình chính tắc: \(\dfrac{{x – {x_0}}}{a} = \dfrac{{y – {y_0}}}{b} = \dfrac{{z – {z_0}}}{c}\left( {a,b,c \ne 0} \right)\)
+ Phương trình tham số: \(\left\{ \begin{array}{l}x = {x_0} + at\\y = {y_0} + bt\\z = {z_0} + ct\end{array} \right.\left( {t \in \mathbb{R}} \right)\)
Dạng 3: Viết phương trình đường thẳng.
Phương pháp chung:
– Bước 1: Tìm điểm đi qua \(A\).
RED : Food as Medicine – Free open online course
– Bước 2: Tìm VTCP \(\overrightarrow u \) của đường thẳng.
– Bước 3: Viết phương trình tham số hoặc chính tắc của đường thẳng biết hai yếu tố trên.
+) Đi qua hai điểm.
Đường thẳng \(AB\) đi qua \(A\) và nhận \(\overrightarrow {AB} \) làm VTCP.
+) Đi qua một điểm và song song với một đường thẳng.
Đường thẳng \(d\) qua \(A\) và song song với \(d’\) thì \(d\) có VTCP \(\overrightarrow {{u_d}} = \overrightarrow {{u_{d’}}} \)
+) Đi qua một điểm và vuông góc với hai đường thẳng.
Đường thẳng \(d\) đi qua điểm \(A\) và vuông góc với hai đường thẳng \({d_1},{d_2}\) thì \(d\) có VTCP \(\overrightarrow u = \left[ {\overrightarrow {{u_1}} ,\overrightarrow {{u_2}} } \right]\)
Source: https://bloghong.com
Category: en